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A B S T R A C T
A common query type in location-based services (LBS) is finding the nearest neighbor (NN) of a given
query object. However, the exact location of the query object is often sensitive information, posing
significant privacy risks if the LBS server is untrusted or compromised. In this paper, we propose
PrivNN, a novel spatial NN query processing framework that allows users to perform exact NN queries
without revealing their location. Our framework introduces a novel spatial NN search algorithm,
Dynamic Hierarchical Voronoi Overlay (DHVO), which efficiently finds the nearest neighbor by
iteratively refining the search region using multi-granular Voronoi diagrams. We also present a
client–server communication protocol that enables the server to respond to encrypted spatial NN
queries by employing homomorphic encryption. We rigorously prove the correctness of our algorithm,
analyze the theoretical properties of our framework, and demonstrate its strong security and robust
privacy bounds. We implement and evaluate PrivNN on real-world spatial datasets, showing that
it substantially reduces computational and communication overhead while remaining practical for
private NN search in LBS applications.

1. Introduction
The widespread adoption of GPS-enabled devices, such

as mobile phones and smartwatches, coupled with the preva-
lence of cloud computing, has significantly driven the growth
of location-based services (LBSs), making them integral to
our daily lives. LBS providers own and host large spatial
databases in the cloud, utilizing users’ geospatial locations
at various levels of granularity to deliver personalized query
results. For instance, Google only needs the user’s city or
region to provide weather updates or regional news, whereas
finer granularity at the neighborhood or zip code level is
necessary for services like finding nearby restaurants or
attractions. While these services offer convenience, they also
raise significant privacy concerns regarding users’ location
data [1–4].

Privacy concerns over users’ location data are directly
related to data granularity because the level of detail in
location data can significantly impact the potential for mis-
use and the risk to user privacy. While some users may be
comfortable sharing their location at a coarse granularity,
certain types of LBSs require finer-grained locations, such
as GPS coordinates, to be effective. For instance, when Alice
searches for the nearest coffee shop, she needs to share
her precise location to receive accurate results. However,
fine granule location data, such as Alice’s GPS coordinates,
can reveal intimate details about individuals, including their
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home addresses, workplaces, and frequently visited loca-
tions [5]. By correlating this data with publicly accessible
information, such as telephone directories, adversaries can
deduce individuals’ identities, behavior patterns, and per-
sonal lives, leading to identity theft, stalking, or unautho-
rized surveillance [6, 7].

Moreover, users often inadvertently or are compelled
to authorize LBS providers to share their data with third
parties. These third parties, who may pose even greater
risks, further jeopardize user privacy. Recent high-profile
incidents involving user location data at Uber [8–12] and
unethical data sharing by the fitness app Runkeeper [13]
underscore the urgent need for robust privacy protections for
users’ location data from untrusted LBS providers.
1.1. Motivation

The query sent by Alice is an example of a spatial nearest
neighbor (NN) query, which identifies the object that mini-
mizes a distance-based function relative to a query object.
Spatial NN queries are the backbone of LBSs with numer-
ous applications, such as proximity search, route planning,
navigation, and emergency response (e.g., E-911 service).
Accurate distance function evaluation in spatial NN queries
necessitates the user’s precise location to ensure the cor-
rectness of the query results. Consequently, this requirement
places user privacy at significant risk when dealing with
untrusted LBS providers.

Most existing work on preserving user location privacy
in spatial nearest neighbor (NN) queries can be categorized
into cooperation- and cryptography-based methods [5,6,14].
Location obfuscation techniques, such as differential pri-
vacy [15], cloaking regions [16], and dummy locations [17],
obfuscate a user’s precise location to preserve privacy. How-
ever, these methods, which rely on altered user locations,
are only applicable to process aggregate queries, such as
group spatial NN queries, and cannot provide exact results
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(a) Voronoi diagram with coarse
granularity (red), consisting of 5
generator points.

(b) Overlay of two Voronoi di-
agrams. The Voronoi diagram
(black) represents the finer gran-
ularity with 21 generator points.

Figure 1: On the left is a coarse-granularity Voronoi diagram
(red) with 5 generator points, while on the right, a finer-
granularity Voronoi diagram (black) with 21 generator points
is overlaid on the coarse-granularity diagram.

for individual spatial NN queries. Additionally, the privacy
level is weakly quantified by metrics like location indistin-
guishability and k-anonymity, making them susceptible to
sophisticated attacks, such as side-channel attacks.

On the other hand, cryptography-based methods encrypt
user locations to hide them from LBS servers. These ap-
proaches can provide exact spatial NN query results for indi-
vidual queries with rigorous security guarantees. However,
the computational and communication overheads associated
with encryption schemes make spatial NN searches ineffi-
cient and impractical in real-world applications. Moreover,
some cryptography-based methods require a middle layer,
such as a trusted third party, for encryption key management
to ensure secure communication between the client and
server [14]. This additional layer can become a network
bottleneck and introduce security and privacy vulnerabilities
if it is compromised.

In summary, while existing methods can preserve the
user’s private location in spatial NN queries with various
trade-offs, to the best of our knowledge, there are still no
practical solutions for privacy-preserving spatial NN query
processing with strong security guarantees. This is due to
three main challenges: (i) the results of proximity evalua-
tion without the user’s precise location are inaccurate, (ii)
performing spatial NN search against a large spatial dataset
with encrypted user locations is inefficient, and (iii) relying
on third parties for secure client-server communication is
difficult to ensure in practice.
1.2. Our Solution

To address these challenges, we propose PrivNN, a novel
two-party computation framework that allows servers to ef-
ficiently process spatial NN queries without knowing users’
precise locations. PrivNN comprises two main components:
a novel spatial NN search algorithm, named Dynamic Hi-
erarchical Voronoi Overlay (DHVO), which efficiently per-
forms exact spatial NN searches on large spatial datasets, and
a secure client-server communication protocol implemented
with the homomorphic encryption (HE) scheme [18].

Upon registering with PrivNN, the user generates a pair
of public and private keys, storing the public key on the
server. The user then encrypts her query location and sends
the encrypted query to the server along with a user-specified
privacy profile, which includes two parameters: the partition
factor 𝑘, which controls the search refinement granularity
and consequently optimizes network traffic load for better
communication efficiency, and the initial search region ,
which defines a user-customized initial search region to
speed up query processing while maintaining security and
privacy guarantees.

The main idea behind DHVO is to refine the search space
by iteratively overlaying multi-granular Voronoi diagrams.
Initially, DHVO computes and saves a Voronoi diagram
over the entire search space as its reference layer. It then
iteratively overlays multiple Voronoi diagrams, generated
through random sampling, onto this reference layer to refine
the search space. This refinement process is dynamic, with
the granularity of the generated Voronoi diagrams controlled
by the user’s privacy profile. DHVO returns the NN search
result when the search space is refined to contain at most 𝑘
Voronoi polygons in the base layer. As an example, Figure 1
illustrates the refinement of the search space by overlaying
two Voronoi diagrams with different granularities.

To demonstrate PrivNN’s performance, we conduct a
case study performing spatial NN search on a real-world
dataset within a client-server architecture. We systematically
evaluate PrivNN with various parameter settings and pro-
vide heuristics for optimizing these parameters to enhance
PrivNN’s performance. The results show that PrivNN can
efficiently process exact spatial NN queries under various
network conditions.

In summary, the contributions of this paper can be sum-
marized as follows:

1. We propose a novel spatial NN search algorithm,
DHVO, to efficiently solve the exact NN spatial search
problem. DHVO iteratively refines the search space
by overlaying multi-granular Voronoi diagrams under
parameter control. We demonstrate that our algorithm
consistently produces correct and exact NN search
results, with sublinear time and space complexities in
the worst-case scenario.

2. We introduce PrivNN, a privacy-preserving two-party
computation framework that enables the server to pro-
cess spatial NN queries with encrypted user locations.
PrivNN comprises DHVO and a client-server com-
munication protocol that is parameterized to optimize
network traffic load, thereby enhancing communica-
tion efficiency.

3. We provide formal analyses of the security and pri-
vacy guarantees of PrivNN and prove that PrivNN
is secure against semi-honest adversaries under the
known background model, along with establishing the
privacy bound.

4. We present experimental evidence from real-world
datasets demonstrating that PrivNN is efficient in
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terms of query processing time and client-server
network communication.

We organize this paper as follows: Section 2 reviews
prior research related to our work. In Section 3, we formulate
the problem and outline our system model, threat models,
design goals, and primary notations. Section 4 presents the
preliminaries, including the Voronoi diagram and homo-
morphic encryption. Section 5 describes DHVO, our novel
spatial NN search algorithm, while Section 6 details the
framework PrivNN for privacy-preserving client and server
query processing. Section 7 presents our experimental re-
sults. Finally, we conclude in Section 8.

2. Related Work
Our work is related to previous studies on privacy-

preserving techniques for the spatial NN search problem.
Since the spatial NN search problem can be reduced from the
general k-nearest neighbor (k-NN) search problem, in this
section, we review prior research on the privacy-preserving
k-NN search, also known as the secure k-NN search.

Existing privacy-preserving k-NN search methods can
be classified into two categories: exact k-NN and approxi-
mate k-NN (AkNN) searches. AkNN methods [19] aim to
provide approximate results rather than exact k-NN search
results. These methods excel in terms of searching efficiency,
especially in large and high-dimensional datasets. However,
in this paper, we focus solely on exact k-NN search meth-
ods, as our problem setting requires precise search results.
Researchers have extensively studied methods to preserve
privacy in the exact k-NN search. Based on the mechanisms
of these methods, we present an overview of the existing
approaches as follows.
2.1. Distortion-based Methods

The core principle of these methods is data distortion
through algorithms such as cloaking, spoofing, and perturba-
tion. Cloaking methods [14, 20–27] utilize the k-anonymity
property [28] as a privacy guarantee and are widely adopted
in the geospatial domain. These methods conceal the precise
location of the user by sending a generalized region, known
as a cloaking region, instead of an exact point to the server.
For example, Mokbel et al. [21] proposed submitting NN
queries that include 𝑘 − 1 false locations or 𝑘 queries
together with 𝑘−1 pseudo-users within a cloaking region to
anonymize the user using k-anonymity. Furthermore, Gedik
et al. [22] extended the cloaking regions to the temporal
dimension by allowing a delay until 𝑘−1 users are present in
the cloaking region. However, cloaking methods are primar-
ily applied to process aggregate and group queries and thus
are not suitable for our objective of protecting the privacy of
individual users.

Another class of distortion-based methods is spoofing.
For example, dummy data methods [29–33] use fake loca-
tions instead of cloaking regions to conceal user locations.
Essentially, these methods select fake locations that are close
to the real location and generate an obfuscation set that
is then forwarded to the server. The server processes the

queries for all locations in the obfuscation set and returns
the results. The user subsequently selects the result corre-
sponding to the real location, thereby hiding it from the
server. Despite their effectiveness, these methods generate a
large amount of dummy query data, resulting in prohibitively
high communication and computational overheads. Further-
more, both cloaking and dummy data methods rely on the
k-anonymity property [28], which lacks a formal privacy
guarantee [34].

Differential privacy (DP) methods [35–41], which dis-
tort data through perturbation, work by injecting controlled
random noise to obscure sensitive information while still
allowing useful aggregate insights to be derived. Unlike ap-
proaches based on k-anonymity, DP methods provide prov-
able formal privacy assurances [42]. Research in [43,44] has
explored the application of DP to the k-NN search problem in
computer vision and other classification tasks, demonstrat-
ing that private models can achieve performance comparable
to their non-private counterparts. However, despite these
advancements, the privacy guarantees of DP come at the
cost of introducing random perturbation into the results [45],
leading to inaccuracies in individual query results [44]. This
limitation makes DP methods unsuitable for our model,
which requires precise results for each query.
2.2. Cryptography-based Methods

Cryptography-based methods utilize cryptographic tech-
niques to conceal sensitive data without altering its integrity.
Existing methods in this category include space transforma-
tion, private information retrieval (PIR), and secure multi-
party computation (SMC).

Space transformation techniques (e.g., [46–48]) encrypt
location and query data for secure transmission to servers,
ensuring that only mobile users can decrypt the data. How-
ever, these techniques do not consider the original data dis-
tribution, which limits hierarchical access control and results
in inaccurate k-NN results. Consequently, these methods
are unsuitable for addressing the problem discussed in our
paper. PIR is a technique that allows clients to retrieve data
from a server without revealing their access patterns to the
server [49]. Research in [50, 51] introduced a PIR-based
framework for privacy-preserving NN queries in LBSs. Nev-
ertheless, a major limitation of PIR-based methods is the
significant storage, network, and computational overheads
they incur, making PIR-based methods infeasible for han-
dling user queries efficiently in our framework.

SMC methods employ encryption schemes to allow mul-
tiple parties to jointly compute the output of a function
without revealing their individual inputs to each other. Prior
research has explored the application of SMC methods in se-
cure k-NN queries. For instance, Wong et al. [52] presented
an asymmetric scalar-product preserving encryption (ASPE)
scheme to perform secure k-NN computations on encrypted
databases. The scalar product between encrypted queries and
data points is preserved, and the encryption equations built
by ASPE enable the user to identify the 𝑘 closest points
among all the encrypted data. Hu et al. [53] discussed the
general problem of k-NN query processing over untrusted
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data clouds. They leverage a privacy homomorphism en-
cryption method to enable the secure execution of a k-NN
best-first search (BFS) algorithm over the R-tree. However,
these methods address the problem of protecting the server’s
dataset against the user, which is the inverse of what we aim
to achieve in this paper.

Elmehdwi et al. [54] introduced a fully secure k-NN
search protocol over encrypted datasets in an outsourced en-
vironment. They developed several basic security protocols,
such as secure multiplication, secure squared Euclidean dis-
tance, secure minimum, and secure bit-or using the Paillier
cryptosystem to construct a comprehensive secure scheme.
This scheme not only preserves data privacy and query
privacy but also hides the data access pattern from the cloud
server. Xu et al. [55] addressed the privacy-preserving k-
NN problem by using garbled circuits to simulate Oblivious
RAM (ORAM) for accessing data in the kd-tree [56] struc-
ture. Similarly, Hsu [57] employed the Paillier cryptosystem
with an R-tree [58] structure to protect users’ query data
from the server. Although these methods are effective in
safeguarding users’ privacy, they assume a trusted third party
between the user and the server, which is not only impracti-
cal in reality but also introduces additional communication
overhead and potential vulnerabilities to the system.

Other studies have explored methods without assum-
ing a trusted third party. Qi and Atallah [59] proposed a
privacy-preserving k-NN search protocol that allows users to
query the server without revealing their data. The protocol
uses secure two-party computation and is provably secure
with linear computation and communication complexities.
However, this protocol assumes the dataset is partitioned
across all querying users rather than stored on the server. In
contrast, our work focuses on the scenario where the server
holds the entire dataset, and the user queries the server for
k-NN search results. Wang et al. [60] proposed a practical
method using ideal secure order-preserving encryption and
the R-tree structure to solve a similar problem on large-
scale data. In their work, the search procedure includes two
interactions between the user and the server. In the first round
of interaction, the server narrows down the candidate results
by identifying which minimum bounding rectangle (MBR)
contains the query and sends the points within the MBR back
to the user. The user then creates a search box according to
the nearest point in the returned set and sends it to the server.
The server outputs all points in that box as the resulting set.
The main drawback of this approach is that it does not return
accurate results, and additional distance calculations must be
performed by the user.

3. Problem Formulation
Our work in this paper addresses a fundamental question

within the domain of location-based services: Is it possible
to design a framework that allows users to perform exact
spatial NN queries 𝑄(𝑢𝑖) without revealing their actual
locations 𝑢𝑖 to the server 𝑆?

Table 1
List of Key Notations

Notation Description
𝑃 the set of 2-dimensional spatial objects.
𝑈 the set of system users.

𝑉𝐷(𝑃 ) the Voronoi diagram generated by the set of
points 𝑃 .

𝑉𝑃 (𝑝𝑖) the Voronoi polygon that contains the genera-
tor point 𝑝𝑖.

𝑑(, ) the Euclidean distance function.
𝑘 the partition factor parameter in DHVO.
 the initial search region parameter in DHVO.
𝑙 the level of DHVO layer.
𝑆𝑙 the set of generator points at the 𝑙-th DHVO

layer.
𝑊𝑙 the search space at the 𝑙-th DHVO layer.

𝑁, 𝑞𝐿 CKKS parameters.

Central to our investigation is the requirement that the
query results 𝑅(𝑢𝑖) must not only be accurate but also
be returned within an operationally feasible timeframe. By
addressing these criteria, we aim to ensure both the privacy
of the user’s location and the practical usability of the
framework. In this section, we first formulate the problem
statement with formal definitions, then illustrate the system
architecture and explain the threat model, followed by stating
our design goals.

For convenience, we list some key notations in Table 1.
3.1. Problem Statement

Consider a set of spatial objects in a 2-dimensional
space, represented as 𝑃 = {𝑝 ∣ 𝑝 ∈ ℝ2}. The dataset 𝑃
is hosted by a server 𝑆 (for example, an LBS provider) to
provide query service. Each object 𝑝𝑖 in 𝑃 is defined by
a tuple 𝑝𝑖 = (𝑝𝑖,1, 𝑝𝑖,2), which denotes the coordinates in
the space, i.e., latitude and longitude. Concurrently, a set of
users 𝑈 = {𝑢 ∣ 𝑢 ∈ ℝ2} exists within the same space. A user
𝑢𝑖 in 𝑈 , determined by their location 𝑢𝑖 = (𝑢𝑖,1, 𝑢𝑖,2), initiates
a NN query 𝑄(𝑢𝑖) to the server 𝑆 using its dataset 𝑃 . The
server, applying a distance function 𝑑 (such as Euclidean
distance), returns the query result 𝑅(𝑢𝑖) = {𝑝 ∈ 𝑃 ∣ ∀𝑝′ ∈
𝑃 , 𝑑(𝑢𝑖, 𝑝) ≤ 𝑑(𝑢𝑖, 𝑝′)}, which includes the spatial object
nearest to the user’s location.
3.2. System Architecture

We illustrate the architecture of PrivNN in Figure 2,
which depicts a two-party computation framework consist-
ing of two principal entities: the query service provider
(referred to as the server) and system-authorized users. The
server manages a database containing spatial objects, which
are considered proprietary assets. Each user can mutually
authenticate with the server and possesses a unique pair of
public and private cryptographic keys. In contrast, the server
has access only to the user’s public keys.

Users are authorized to submit NN queries with en-
crypted locations to the server. Upon receiving a query, the
server processes it and returns the results without decrypting
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Query Service Provider System User

Encrypted Query

Encrypted Result

(Encrypt)

(Decrypt)

Privacy-Preserving Query Processing

Figure 2: The architecture of the PrivNN framework. PrivNN
does not assume any trusted third party. The server hosts the
database, along with encryption parameters associated with
each user. The private keys are known only to the users,
ensuring that the server cannot decrypt the users’ queries. The
region shaded in light grey represents the user’s query in its
encrypted state.

the query. This mechanism ensures that the user’s precise
location remains confidential, effectively concealing it from
the server.
3.3. Threat Model

We model the server as semi-honest (also known as
“honest-but-curious” [61–65]): it correctly follows the pro-
tocol but may attempt to glean extra information from
the messages it processes. We assume the server trusts all
clients, while the server itself could be compromised or
collude with external adversaries in an attempt to break
privacy. Finally, we protect every client–server exchange
using standard network-layer encryption (e.g. TLS/SSL).

There are two known threat models: the known cipher-
text model and the known background model, each based on
different assumptions about the server’s capabilities. Both
models are examined in existing works [66,67]. We provide
formal proofs for the security of our framework under the
known background model in Section 6.
3.4. Design Goals

We observe that an effective framework must preserve
user privacy against a semi-honest server with the following
properties:

1. Query privacy. The authorized user submits her en-
crypted location to the server. The latter executes the
query and sends the nearest neighbor from its database
to the user. Except for the nearest neighbor, the server
does not learn the precise location of the user.

2. Database privacy. The server’s database may contain
proprietary information that should remain private. At
the end of the query process, the user learns nothing
about the database beyond the nearest neighbor to her
query.

3. Accuracy. The server accurately computes the nearest
neighbor of the user’s query.

4. Efficiency. The framework incurs low computational
overhead on the user, providing practical and scalable
query processing.

We note that our framework does not protect against
the case of a server corrupting the database. Additionally,

we assume that the server is motivated to provide a useful
service and, therefore, has no incentive to provide inaccurate
or deceptive query results.

4. Preliminaries
Our proposed approach to address privacy-preserving

NN queries leverages the Voronoi diagram and homomor-
phic encryption (HE). In this section, we begin by review-
ing the definition of Voronoi diagrams, focusing on the 2-
dimensional Euclidean space and highlighting the properties
relevant to our approach. We then introduce the preliminar-
ies of HE, which serve as the foundational elements of our
proposed communication protocol.
4.1. Voronoi Diagram

Voronoi diagram [68] is a data structure that is extremely
efficient in exploring a local neighborhood in a geometric
space. Consider the set of spatial objects𝑃 = {𝑝1,… , 𝑝𝑚} ⊂
ℝ2, in the Euclidean plane, the Voronoi diagram of the given
set of points 𝑃 partitions the space of ℝ𝑛 into 𝑚 regions.
The set of points 𝑃 is called generator points. Each region
includes all points in ℝ2 with a common closest point in
the given set 𝑃 according to the Euclidean distance function
𝑑 [69]. More formally, the Voronoi polygon and Voronoi
diagram can be defined as: Assume the generators set 𝑃 =
{𝑝1,… , 𝑝𝑚} ⊂ ℝ𝑛, where 2 < 𝑚 < ∞ and 𝑝𝑖 ≠ 𝑝𝑗 for
𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐼𝑛 = {1,… , 𝑚}. The region is given by:

𝑉𝑃
(

𝑝𝑖
)

=
{

𝑝 ∣ 𝑑
(

𝑝, 𝑝𝑖
)

≤ 𝑑
(

𝑝, 𝑝𝑗
)} for 𝑗 ≠ 𝑖, 𝑗 ∈ 𝐼𝑛 (1)

where 𝑑(𝑝, 𝑝𝑖) specifies the Euclidean distance between 𝑝
and 𝑝𝑖, i.e., length of the straight line connecting 𝑝 and 𝑝𝑖in Euclidean space, is called the Voronoi polygon associated
with 𝑝𝑖, and the set given by:

𝑉𝐷(𝑃 ) =
{

𝑉𝑃
(

𝑝1
)

,… , 𝑉𝑃
(

𝑝𝑚
)} (2)

is called the Voronoi diagram generated by 𝑃 with respect
to the Euclidean distance function 𝑑. The Voronoi polygons
of a Voronoi diagram are collectively exhaustive because
every location in the plane is associated with at least one
generator. The polygons are also mutually exclusive except
for their boundaries. The boundaries of the polygons called
Voronoi edges, are the set of locations that can be assigned
to more than one generator. The Voronoi polygons that
share the same edges are called adjacent polygons, and their
generators are called adjacent generators. Figure 1(a) shows
the Voronoi diagram created by 5 generator points inℝ2 with
the Euclidean distance function. Throughout this paper, we
use the Euclidean distance function in the space of ℝ2.

Next, we review two basic geometric properties of the
Voronoi diagrams. The proofs for these properties are pre-
sented in [69]. These properties are the basis for proving the
correctness of our algorithm introduced in Section 5.
Property 1: The Voronoi diagram of a certain set 𝑃 of
points, 𝑉𝐷(𝑃 ), is unique.
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Property 2: Given the Voronoi diagram of 𝑃 and a query
point 𝑞 ∉ 𝑃 , a point 𝑝 is the nearest point of 𝑃 to 𝑞, if and
only if 𝑞 ∈ 𝑉𝑃 (𝑝).
4.2. Sqaured Euclidean Distance

The Squared Euclidean distance (SED) is extensively
utilized in computational applications, notably in algorithms
such as k-means clustering [70], due to its operational
simplicity compared to the traditional Euclidean distance.
Consider two points in an 𝑛-dimensional space ℝ𝑛: 𝑢 =
(𝑢1, 𝑢2,… , 𝑢𝑛), representing a user’s location, and 𝑝 =
(𝑝1, 𝑝2,… , 𝑝𝑛). As 𝑑(𝑢, 𝑝) denotes the Euclidean distance
between 𝑢 and 𝑝, then we denote SED as 𝑑2(𝑢, 𝑝), is calcu-
lated as:

𝑑2(𝑢, 𝑝) = ‖𝑢 − 𝑝‖22 =
𝑛
∑

𝑖=1
(𝑢𝑖 − 𝑝𝑖)2 (3)

Here, 𝑑2(𝑢, 𝑝) corresponds to the square of the 𝓁2-norm
of the vector difference between the points, effectively elim-
inating the square root operation typically involved in com-
puting Euclidean distances.

Given that the squaring function is strictly increasing for
non-negative values, SED inherently preserves the ordering
of distances as determined by the Euclidean metric. Conse-
quently, the relationship:

‖𝑢 − 𝑝‖2 is minimal ⟺ ‖𝑢 − 𝑝‖22 is minimal (4)
holds true. This preservation of ordering renders the Squared
Euclidean Distance (SED) particularly advantageous in con-
texts where relative distance comparisons are crucial. By
circumventing the computational demands of the square root
calculation, SED facilitates efficient and accurate ranking
and proximity evaluations. Therefore, we adopt SED for
distance computations in this paper.
4.3. Homomorphic Encryption (HE)

HE is a special type of encryption that supports arith-
metic operations between ciphertexts without decryption.
It has been successfully applied in various fields [71–74]
involving private data as it allows the analysis of encrypted
data without information leakage from messages. HE was
first proposed in a blueprint by Gentry and Boneh [18],
and a number of HE schemes have been suggested [75–
84]. The term “homomorphic” derives from the Greek
words “homos” and “morphe,” which together mean “same
shape” [85]. In the field of algebra, the term homomorphism
is used for “a structure-preserving mapping between two
algebraic structures” [86]. In terms of cryptography, this
means that the input clear text data (or plaintexts ) is
mapped to encrypted data (or ciphertexts ) such that the
algebraic structure between  and  is preserved over
addition and multiplication. More concretely, let 𝑎, 𝑏 ∈
𝑃 and 𝐸𝑁𝐶 denotes the HE encryption procedure, then
𝐸𝑁𝐶(𝑎) ⊕ 𝐸𝑁𝐶(𝑏) = 𝐸𝑁𝐶(𝑎 + 𝑏) and 𝐸𝑁𝐶(𝑎) ⊙
𝐸𝑁𝐶(𝑏) = 𝐸𝑁𝐶(𝑎 ⋅ 𝑏), where ⊕ and ⊙ are homomorphic
addition and multiplication, respectively, and where equality
is achieved after decryption.

The possible operations of HE methods are limited to
addition and multiplication in known methods. Neverthe-
less, HE methods are able to perform arbitrary operations,
as proven by Gentry [87]. He demonstrated that circuit func-
tions that are based on only additions and multiplications
enable modeling arbitrary operations [87]. This allows one
to evaluate arbitrary computations (modeled as circuits) on
encrypted data by only manipulating the ciphertexts.

HE is typically classified into three categories based
on the type and number of operations it supports: Par-
tially Homomorphic Encryption (PHE), Somewhat Homo-
morphic Encryption (SHE), and Fully Homomorphic En-
cryption (FHE) [85, 87]. PHE schemes are limited to sup-
porting either addition or multiplication, but not both. In
contrast, both SHE and FHE are capable of performing
unrestricted addition and multiplication. A key distinction
between SHE and FHE lies in their error-correction mech-
anisms [18]. In HE schemes, ciphertexts are intentionally
infused with a small degree of noise to enhance security [88].
This noise accumulates with each computational operation
(high rate for multiplication and low rate for addition),
potentially leading to decryption failure if it surpasses a pre-
defined threshold. To address this challenge, FHE employs
a bootstrapping technique, which effectively reduces a high-
noise ciphertext to a low-noise one, thereby facilitating the
evaluation of functions at arbitrary computational depths
without decryption. However, bootstrapping is notably more
computationally demanding than other operations due to
its reliance on complex, non-polynomial decryption pro-
cesses. Conversely, SHE avoids the use of bootstrapping,
thus requiring less computational power. Nonetheless, this
limitation restricts the number of permissible operations
before the noise level reaches a critical error threshold, be-
yond which computational errors may become prohibitively
large [18, 89].

Modern FHE schemes exhibit a diversity in their under-
lying mathematical structures, capabilities, and performance
metrics. In this paper, we utilize the squared Euclidean
distance function over real numbers to measure spatial prox-
imity. As our method has an indeterministic number of ho-
momorphic operations, we have used the CKKS scheme [77]
to encrypt the user’s queries as it can achieve fully homomor-
phic capabilities without depth limitations. Moreover, the
CKKS scheme is particularly suited for handling computa-
tions on encrypted floating-point numbers, thereby aligning
well with the needs of our proposed method.
4.4. The CKKS Scheme

The CKKS scheme, as described in [77], is a leveled
approximate FHE scheme. During encryption in CKKS, a
minimal amount of noise is introduced into the plaintext
to secure the ciphertext, and this noise remains even after
decryption. The impact of this noise is minimal relative to
the decryption output, which is why the output is considered
an "approximate" decryption result. The efficiency of CKKS
has been proven for many real-world applications, such as
machine learning [74, 90] and cyber physical system [91],
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and is still being improved with better bootstrapping algo-
rithms [92,93]. Next, we briefly describe the CKKS scheme
used in our work as defined in [77, 94, 95], and omit details,
such as Relinearization and Rescaling for simplicity.

Consider𝑁 as a power of 2, and define𝑅 = ℤ[𝑋]∕(𝑋𝑁+
1) as the ring of polynomials with integer coefficients, each
having a degree less than 𝑁 and taken modulo 𝑋𝑁 + 1. For
a given positive integer 𝑞, the ring 𝑅𝑞 = ℤ𝑞[𝑋]∕(𝑋𝑁 + 1)
includes identical polynomials but with coefficients modulo
𝑞. Suppose 𝑞𝐿 > 𝑞𝐿−1 > ⋯ > 𝑞1 represent 𝐿 increasing
positive integers where each 𝑞𝑙 =

∏𝑙
𝑖=1 𝑝𝑖 and the 𝑝𝑖 are

small prime numbers. In the CKKS scheme, 𝐿 indicates
the highest level of multiplicative depth available. At any
specific level 𝑙 from 1 to𝐿, all operations are executed within
𝑅𝑞𝑙 = ℤ𝑞𝑙 [𝑋]∕⟨𝑋𝑁 + 1⟩. Initially, encrypted data involves
ciphertext polynomials from 𝑅𝑞𝐿 at the highest level 𝐿,
which may later be adjusted to 𝑅𝑞𝐿−1 . This process in CKKS
suggests a framework with 𝐿 computational levels, starting
from the top and potentially moving downward as necessary.
The terms DFT and IDFT refer to the Discrete Fourier Trans-
form and its inverse. Given input data represented as real
or complex numbers, we describe the main algorithms and
holomorphic operations [95] used in our work as follows:

• Setup: given a desired security level 𝜆, and maximum
computation levels 𝐿, initialize CKKS by setting 𝑁 ,
two uniform random distributions: 𝑘𝑒𝑦 over 𝑅2 and
𝑞𝐿 over 𝑅𝑞𝐿 , and a zero-mean discrete Gaussian
distribution 𝑒𝑟𝑟 with standard deviation 𝜎 over 𝑅𝑞𝐿 .

• KeyGen: let 𝑠 ← 𝜒𝑘𝑒𝑦 and 𝑒 ← 𝜒𝑒𝑟𝑟. Sample uniformly
random 𝑎 ∈ 𝑅𝑞𝐿 . Output the secret key sk = (1, 𝑠),
the public key pk = (𝑏, 𝑎), where 𝑏 = [−𝑎 ⋅ 𝑠 + 𝑒]𝑞𝐿 .

• Encodepk(𝑣, 𝜌): given a vector of complex numbers
𝑣 ∈ ℂ𝑁∕2 and precision 𝜌, return a polynomial 𝜇 =
⌊IDFT (2𝜌𝑣)⌉ ∈ 𝑅.

• Encpk(𝜇): given a plaintext message𝜇, sample 𝑣 ←𝑞𝐿and 𝑒0, 𝑒1 ← 𝑒𝑟𝑟. Return ciphertext
𝑐𝑡 =

(

𝑐0, 𝑐1
)

=
(

𝑎𝑣 + 𝜇 + 𝑒0, 𝑏𝑣 + 𝑒1
)

∈ 𝑅2
𝑞𝐿

.
• Decsk(ct): given a ciphertext 𝑐𝑡 ∈ 𝑅2

𝑞𝑙
, return 𝜇 = 𝑐0+

𝑠𝑐1 ∈ 𝑅𝑞𝑙 .
• Decodesk(𝜇, 𝜌): given 𝜇 ∈ 𝑅 and precision 𝜌, return

𝑣 = DFT (𝜇∕2𝜌) ∈ ℂ𝑁∕2.
Homomorphic operations can be carried out via:

• HAdd(𝑐𝑡0, 𝑐𝑡1): For ciphertexts 𝑐𝑡0 and 𝑐𝑡1 at the same
level 𝑙, output the ciphertext 𝑐𝑡+ = 𝑐𝑡0 + 𝑐𝑡1 ∈ 𝑅2

𝑞𝑙
.

• HMult(𝑐𝑡0, 𝑐𝑡1): For ciphertexts 𝑐𝑡0 and 𝑐𝑡1, output the
ciphertext 𝑐𝑡× = (𝑐0, 𝑐1, 𝑐2) ∈ 𝑅3

𝑞𝑙
, where

𝑐0 = [𝑐𝑡0[0] ⋅ 𝑐𝑡1[0]]𝑞𝑙 ,
𝑐1 = [𝑐𝑡0[0] ⋅ 𝑐𝑡1[1] + 𝑐𝑡0[1] ⋅ 𝑐𝑡1[0]]𝑞𝑙 ,
𝑐2 = [𝑐𝑡0[1] ⋅ 𝑐𝑡1[1]]𝑞𝑙 .
Note that the relinearization procedure can reduce 𝑐𝑡×
back to two elements ∈ 𝑅2

𝑞𝑙
.

• HAddPlain(𝑐𝑡, 𝑝𝑡): homomorphic addition of a cipher-
text 𝑐𝑡 = (𝑐0, 𝑐1) ∈ 𝑅2

𝑞𝑙
and plaintext 𝑝𝑡 ∈ 𝑅, output

the ciphertext 𝑐𝑡+ = (𝑐0 + 𝑝𝑡, 𝑐1) ∈ 𝑅2
𝑞𝑙

.
• HMultPlain(𝑐𝑡, 𝑝𝑡): For ciphertexts 𝑐𝑡0 = (𝑐0, 𝑐1) ∈ 𝑅2

𝑞𝑙and plaintext 𝑝𝑡 ∈ 𝑅, output the ciphertext 𝑐𝑡× =
(𝑐0 ⋅ 𝑝𝑡, 𝑐1 ⋅ 𝑝𝑡) ∈ 𝑅2

𝑞𝑙
.

We adopt the CKKS encryption scheme as it supports
both addition and multiplication on encrypted floating point
data, which is well-suited for distance function evaluation in
our work. However, note that the ciphertext size and noise
may increase during operations. To manage these, we apply
the relinearization procedure to control ciphertext size and
maintain accuracy in multiplicative operations.

5. Dynamic Hierarchical Voronoi Overlay
(DHVO)
In this section, we introduce DHVO, a dynamic spatial

NN search algorithm. We begin by detailing the construction
process of DHVO layers with increasing granularity. Fol-
lowing this, we present the DHVO algorithm along with its
correctness proof. Finally, we conduct a complexity analysis
and compare DHVO with existing methods.
5.1. DHVO Layer Construction

We consider a 2D spatial dataset 𝑃 containing 21 points
in Euclidean space. Our objective is to identify the point in
𝑃 closest to a given query point 𝑞 using the DHVO structure.
The key parameter to build the DHVO layers is the partition
factor 𝑘. For this illustration, we set the 𝑘 = 5 and use the
Euclidean distance function to evaluate proximity.

Firstly, we construct VD(𝑃 ), the Voronoi diagram of 𝑃 ,
and save it as the reference layer, as illustrated in Figure 3.
This reference layer is used for building subsequent layers.
Next, starting from layer 1 on the left, we randomly sample
5 points, defined by 𝑘, as set 𝑆1 from a uniform distribution
across the entire search space, and construct layer 1 by
building the Voronoi diagram of 𝑆1, VD(𝑆1). Using the
Euclidean distance function, we then identify the Voronoi
polygon, VP(𝑠1,2) in layer 1 containing the query point 𝑞.

Next, we perform a geometric intersection operation
between the Voronoi diagram VD(𝑃 ) and VP(𝑠1,2). We com-
pute the number of intersecting Voronoi polygons in VD(𝑃 )
with VP(𝑠1,2). Since the number of intersecting polygons
exceeds 5, we proceed to build layer 2 in DHVO to form a
reduced search space that includes the union of all intersect-
ing Voronoi polygons in the reference layer. This process of
constructing subsequent layers continues until the number
of intersecting Voronoi polygons is less than or equal to 5.
As in the example shown in Figure 3, we reach the base
layer of the DHVO structure, where there are 4 intersecting
Voronoi polygons in the reference layer, which is less than
𝑘 = 5. At the base layer, DHVO reduced the search space to
VD(𝑃 ′), where 𝑃 ′ ⊆ 𝑃 and |𝑃 ′

| ≤ 𝑘. Finally, we compute
the distances and identify 𝑝7 ∈ 𝑃 as the nearest data point
to 𝑞.
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Figure 3: A geometrical illustration of building the DHVO layers to identify nearest neighbor in 𝑃 to query point 𝑞, with |𝑃 | = 21
and 𝑘 = 5. In this example, the DHVO construction reaches the base layer after constructing 2 intermediate layers. At the base
layer, the point 𝑝7 ∈ 𝑃 is identified as the nearest point to 𝑞.

In summary, DHVO iteratively partitions the search
space by constructing Voronoi diagrams as subsequent
layers, each progressively narrowing the search space con-
taining the query point 𝑞 until the nearest neighbor can
be identified with fewer than 𝑘 distance computations. The
search space partitioning rate is controlled by the partition
factor 𝑘. It is important to note that the sampling process at
each intermediate layer, such as layer 1 and layer 2, draws
𝑘 points randomly and may not belong to 𝑃 . However, the
Voronoi polygons at the base layer are generated by points in
𝑃 , ensuring that the nearest neighbor result is strictly from
𝑃 .
5.2. Algorithm

Building on the construction process of the DHVO lay-
ers described in Section 5.1, we propose our NN search
algorithm detailed in Algorithm 1. This algorithm takes
as inputs a spatial dataset 𝑃 as the candidate set, a query
point 𝑢, and a partitioning factor 𝑘, outputting the nearest
neighbor in 𝑃 to 𝑢. Initially, the Voronoi diagram VD(𝑃 )
is computed for all candidates in 𝑃 as the reference layer
(line 1). This reference layer is then used to initialize the
Voronoi diagram VD(𝑃 ′) in the initial search space (line 2),
along with the initialization of the layer variable 𝑙 (line 3).
At each intermediate layer, partition candidates are sampled
within the search space from the previous layer (lines 6-7).
The search process progresses through successive DHVO
layer constructions, iteratively reducing the candidate set 𝑃 ′

via set intersection operations (line 10). The search loop
terminates when there are at most 𝑘 candidates left in 𝑃 ′.

The correctness of our algorithm is based on the proper-
ties of the Voronoi diagram (Properties 1 and 2 in Section 4),
and the condition that the Voronoi polygon VP(𝑝) containing
the query point 𝑞 is contained within the search spaces at
each DHVO layer. By applying mathematical induction, we
establish the correctness of our algorithm.
Lemma 1. Given a query point 𝑞 and a spatial dataset 𝑃
of points in ℝ2, the Voronoi polygon VP(𝑝) containing the
query point 𝑞 is contained within the search space at each
DHVO layer (i.e., VP(𝑝) ⊆ 𝑊𝑙 for each layer 𝑙).

Algorithm 1: DHVO Algorithm
Input: Spatial dataset 𝑃 = {𝑝1,… , 𝑝𝑚}; Query

point 𝑢;
Parameter: Partitioning factor 𝑘
Output: The nearest point 𝑝 ∈ 𝑃 to 𝑢;

1 Compute Voronoi diagram VD(𝑃 ) for 𝑃 as
generator points

2 VD(𝑃 ′) ← VD(𝑃 ) // initialize VD(𝑃 ′)
3 𝑙 ← 0 // layer 0 is reference layer

4 while |𝑃 ′
| > 𝑘 do

5 𝑙 ← 𝑙 + 1
6 𝑊𝑙 ←

⋃

𝑝𝑖∈𝑃 ′ VP(𝑝𝑖) // current search space

7 𝑆𝑙 ← Sample(𝑊𝑙, 𝑘)
8 Compute Voronoi diagram VD(𝑆𝑙) for generator

points 𝑆𝑙
9 𝑠 ← the point in 𝑆𝑙 nearest to 𝑢

10 VD(𝑃 ′) ← VD(𝑃 ) ∩ VP(𝑠)
11 𝑝 ← the point in 𝑃 ′ nearest to 𝑢
12 return 𝑝 ∈ 𝑃 ′ closest to 𝑢 // 𝑃 ′ ⊆ 𝑃

Proof. We construct our proof using mathematical induc-
tion. Consider 𝑝 ∈ 𝑃 as the nearest neighbor to the query
point 𝑞, i.e., 𝑞 ∈ VP(𝑝). At layer 1, the search space is the
same as the Voronoi diagram VD(𝑃 ) generated by the points
in 𝑃 . Hence, VP(𝑝) is evidently contained in the search
space.

Assume that at layer 𝑙, VP(𝑝) is contained within the
search space 𝑊𝑙. Let point 𝑠(𝑙,1) be the nearest neighbor to 𝑞
at layer 𝑙. The search space 𝑊𝑙+1 at layer 𝑙 + 1 is formed by
the geometric intersection of VD(𝑃 ) with VP(𝑠(𝑙,1)) (lines 6
and 10 in Algorithm 1). Since 𝑞 ∈ VP(𝑠(𝑙,1)) and 𝑞 ∈ VP(𝑝),
it follows that VP(𝑝) ⊆ 𝑊𝑙+1.

Therefore, by induction, VP(𝑝) is contained within the
search space at each DHVO layer, Lemma 1 holds.
5.3. Complexity Analysis

DHVO finds the NN in a spatial dataset 𝑃 by iteratively
partitioning the search space using Voronoi diagrams. The
algorithm reduces the search space by a factor of 𝑘 at each
layer, resulting in a logarithmic reduction in the search space
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size. The number of layers needed to reduce the search space
to the base layer is log𝑘 𝑚, where𝑚 is the number of elements
in the search space.

The time complexity for each layer involves constructing
a Voronoi diagram for 𝑘 points and performing set intersec-
tions. Constructing a Voronoi diagram for 𝑘 points by For-
tune’s algorithm [96] has a time complexity of 𝑂(𝑘 log 𝑘).
Therefore, the total time complexity of the DHVO algorithm
is:

𝑂(𝑘 log 𝑘 ⋅ log𝑘 𝑚) = 𝑂(𝑘 log𝑚) (5)
Since 𝑘 is a constant, DHVO achieves a sublinear time
complexity for finding the NN in a spatial dataset.

The space complexity is determined by the storage re-
quirements for the partition points at each layer, which is
𝑂(𝑘) for each of the log𝑘 𝑚 layers, leading to a total space
complexity of:

𝑂(𝑘 ⋅ log𝑘 𝑚) = 𝑂(𝑘 log𝑚∕ log 𝑘) (6)

6. PrivNN
6.1. Protocol of PrivNN

We outline the communication protocol of PrivNN in
Algorithm 2, which facilitates a private nearest neighbor
(NN) search between the client and the server. Initially, the
client encrypts the query point 𝑢 using the CKKS public
key, resulting in the ciphertext 𝑐𝑢. The client then selects the
partition factor 𝑘 and the initial search region , and sends
both parameters along with 𝑐𝑢 to the server (lines 1-2). The
server, which already has a pre-computed Voronoi diagram
𝑉𝐷(𝑃 ) of its dataset 𝑃 , initializes a working Voronoi dia-
gram 𝑉𝐷(𝑃 ′) as a copy of 𝑉𝐷(𝑃 ) (line 3). We introduce
the initial search region  as a region enclosing the query
point 𝑢 to speed up the query processing without sacrificing
privacy. A formal analysis of the impact of the size of  on
the privacy bound is provided in Section 6.4.

As the protocol progresses, the server iteratively refines
𝑃 ′ to focus on potential nearest neighbors. In each iteration,
if the size of 𝑃 ′ exceeds 𝑘, the server samples 𝑘 generator
points from 𝑃 ′, constructs a temporary Voronoi diagram,
and calculates the squared Euclidean distance (SED) be-
tween 𝑢 and each generator point using homomorphic op-
erations (line 6). These SED values, still encrypted, are sent
back to the client. The client decrypts these values, identifies
the minimum SED, and informs the server of the index of
this minimum (line 8). The server then performs a set inter-
section operation between the reference layer 𝑉𝐷(𝑃 ) and the
polygon containing the generator point with the minimum
SED, updating 𝑉𝐷(𝑃 ′) with the intersecting polygons in
𝑉𝐷(𝑃 ) (line 9). This iterative process continues until there
are at most 𝑘 points in 𝑃 ′. The server then calculates the
SEDs for all points in 𝑃 ′ and sends these encrypted values to
the client, who decrypts them to find and confirm the nearest
neighbor 𝑝. This protocol ensures that the DHVO algorithm
is executed in a privacy-preserving manner, with the server
unable to learn the user’s location.

Algorithm 2: Protocol of PrivNN
Input: The point set 𝑃 = {𝑝1,… , 𝑝𝑚},

pre-computed Voronoi diagram 𝑉𝐷(𝑃 ), user
query point 𝑢;

Parameters: 𝑘, , CKKS parameters;
Output: The nearest point 𝑝 ∈ 𝑃 to 𝑢 from the

server’s dataset;
// At client:

1 Creates ciphertext 𝑐𝑢 by encrypting the query point
𝑢 with CKKS public key.

2 Chooses parameters 𝑘 and , and sends 𝑐𝑢, 𝑘 and 
to the server.

// At server:

3 Server initializes 𝑉𝐷(𝑃 ′) by performing a set
intersection between  and 𝑉𝐷(𝑃 )

4 while |𝑃 ′
| > 𝑘 do

5 Server create a Voronoi diagram by sampling 𝑘
generator points as 𝑆 within the search region
𝑉𝐷(𝑃 ′).

6 Server homomorphically computes SED values
between 𝑐𝑢 and 𝑆 by using homomorphic
operations AddPlain(cu, S) and MultPlain(cu, S).

7 Server sends SED values in ciphertext to the
client.

// At client:

8 Client decrypts SED values and sends the
index of the nearest generator point in 𝑆 to the
server.

// At server:

9 Server updates 𝑉𝐷(𝑃 ′) by performing a set
intersection between the polygon containing
the nearest generator point and 𝑉𝐷(𝑃 ).

// At server:

10 Server homomorphically computes |𝑃 ′
| SED

values in cyphertext by using homomorphic
operations AddPlain(cu, P’) and MultPlain(cu, P’).

11 Server sends |𝑃 ′
| SED values in ciphertext with 𝑃 ′

to the client.
// At client:

12 Client decrypts |𝑃 ′
| SED values and finds the

𝑝 ∈ 𝑃 with minimum SED value from 𝑃 ′.
13 return 𝑝

6.2. Security Analysis
This section presents security proof for the PrivNN

protocol against semi-honest adversaries within the known
background model. We first use the security games the-
ory [97] to prove that the CKKS FHE scheme is semantically
secure, as formalized in the following Lemma.
Lemma 2. The CKKS scheme is semantically secure if the
encrypted messages are indistinguishable.
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Proof. We aim to demonstrate that the probability of a prob-
abilistic polynomial-time (PPT) adversary  successfully
breaking the encrypted messages of the CKKS scheme is
negligible. Suppose the challenger executes Setup and KeyGen

to initialize the CKKS scheme and generate a key pair
consisting of a secret key sk and a public key pk by setting
the security parameter 𝑁 . The adversary  submits two
messages 𝑚0 and 𝑚1. The challenger randomly selects 𝑏 ∈
{0, 1}, encrypts 𝑚𝑏 using pk, and sends the resulting cipher-
text to. Given that CKKS incorporates random noise in the
encryption process, this transforms the plaintext into varied
ciphertexts even when using the same key, ensuring that 
cannot guess 𝑏 correctly with a probability greater than 1∕2.
Consequently, the advantage in the security game is defined
as Adv𝐶𝐾𝐾𝑆,(𝑁) = |Pr[𝑏 = 𝑏′] − 1

2 | < negl(𝑁). Here,
negl(𝑁) is a negligible function of 𝑁 that is asymptotically
smaller than any polynomial inverse as 𝑁 grows, implying
that the adversary’s advantage is too small to be practically
significant. Additionally, the CKKS scheme relies on the
foundational hardness of the Ring Learning With Errors
(Ring-LWE) problem, which is known to be difficult to solve
efficiently with polynomial-time algorithms [98]. Therefore,
Lemma 2 holds.

The indistinguishability of encrypted messages in the
CKKS scheme is based on the added random noise and
the computational difficulty of the underlying Ring-LWE
problem, ensuring robust privacy protection.

Based on Lemma 2, we adopt the simulation-based se-
curity model [99–101] to prove that PrivNN is secure under
the known background model.
Theorem 1. PrivNN is secure against semi-honest adver-
saries under the known background model.

We first introduce some notions used in [101] and adapt
them for our proof.

• History: an interaction between the user and server,
determined by a dataset , and a set of queries 𝑄 =
(

𝑞1,… , 𝑞𝜏
) submitted by users, denoted as the knowl-

edge 𝐻 = (, 𝑄).
• View: the encrypted form of 𝐻 under the shared

public key pk, denoted as 𝑉 (𝐻) = (, 𝑇𝐾(𝑄)), where
𝑇𝐾(𝑄) is the encrypted queries. Note that the server
can only see the views.

• Trace: given a history 𝐻 , the trace 𝑇 𝑟(𝐻) is the
information that can be learned by the server. It con-
tains the access pattern 𝛼(𝐻), search pattern 𝜎(𝐻),
and the returned identifiers 𝐼𝐷(𝑄). Let 𝐼𝐷(𝑞) be the
identifier of the matched data record, and 𝛼(𝐻) =
{𝐼𝐷(𝑞1)),… , 𝐼𝐷(𝑞𝜏 )}. The search pattern 𝜎(𝐻) is an
𝑛×𝜏 binary matrix, where 𝑛 is the size of , 𝜎(𝐻)𝑖,𝑗 is
1 if the 𝑖 is returned by a query 𝑞𝑗 , and 0 otherwise.
Then we have 𝑇 𝑟(𝐻) = {𝐼𝐷(𝑄), 𝛼(𝐻), 𝜎(𝐻)}.

Under the known background model, we assume the
server obtains the 𝑇 𝑟(𝐻), and a certain number of queries

and its probability pairs (𝑞𝑖, 𝑝𝑖). In simpler terms, if two
histories produce the same trace and the server, given the
query distribution, cannot tell which one was created by the
simulator, then it gains no extra information beyond what is
intended to be disclosed (namely, the trace). Therefore, our
approach is considered secure.
Proof. Let  be a simulator that can simulate a view 𝑉 ′ in-
distinguishable from the server’s view 𝑉 (𝐻) = (, 𝑇𝐾(𝑄)),
with the same trace 𝑇 𝑟(𝐻) = {𝐼𝐷(𝑄), 𝛼(𝐻), 𝜎(𝐻)}. To
achieve this, the  does the following:

•  constructs the query 𝑄′ and the encrypted queries
𝑇𝐾(𝑄′) as follows. For each 𝑞′𝑖 ∈ 𝑄′, 1 ≤ 𝑖 ≤ 𝜏,

1. Generate a vector of 2 elements, denoted as 𝑢′ =
(𝑢′1, 𝑢

′
2), where 𝑢′1 and 𝑢′2 are a pair of random

numbers as 2D coordinates within the Voronoi
polygon identified by 𝐼𝐷(𝑞′𝑖 ).2. Generate the encrypted query for each 𝑞′𝑖 by
encrypting 𝑢′ with the shared public key pk. Then
the obtains Encpk(𝑄′) = {Encpk(𝑞′1),… , Encpk(𝑞′𝜏 )}.

•  outputs the view 𝑉 ′ = (, 𝑇𝐾(𝑄′)).
The correctness of such construction is easy to demon-

strate by querying 𝑇𝐾(𝑄′) over . The dataset  and the
encrypted queries 𝑇𝐾(𝑄′) generate the same trace as the
one that the server has. We claim that no probabilistic
polynomial-time (PPT) adversary can distinguish the view
𝑉 ′ from 𝑉 (𝐻). Specifically, due to the semantic security of
CKKS, no PPT adversary can distinguish the 𝑇𝐾(𝑄′) from
𝑇𝐾(𝑄). Moreover, the PPT adversary with the query and
probability pairs cannot distinguish which encrypted queries
originate from the same underlying query because of the
added random noise during the CKKS encryption process,
so it cannot exploit the distributions of plain and encrypted
queries to infer any additional information. Consequently,
Theorem 1 holds.
6.3. Robustness Against Advanced Threats

We extend our security analysis beyond the semi-honest
server assumption to address more sophisticated adversarial
scenarios. PrivNN performs spatial nearest neighbor queries
entirely within the encrypted domain using fully homomor-
phic encryption (FHE), ensuring that a semi-honest server
cannot decrypt or infer any information about user queries or
database entries. Even in the presence of collusion between
a semi-honest server and malicious users, PrivNN remains
secure, as plaintext data is never exposed to any party. To
defend against active attacks—such as data manipulation
or computation tampering—PrivNN can be enhanced with
lightweight verifiable computation mechanisms, including
SNARKs [102, 103] or homomorphic message authentica-
tion codes (MACs) [104], allowing clients to detect unautho-
rized modifications with minimal overhead. Furthermore,
unlike certain FHE-based schemes that require a trusted
third party for key generation or parameter setup, PrivNN
operates strictly within a two-party model, eliminating ex-
ternal trust assumptions. In summary, PrivNN offers strong
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resilience against a broad range of adversarial threats, deliv-
ering a practical and comprehensive security framework.
6.4. Privacy Analysis

In this section, we analyze the privacy metric of PrivNN
by measuring the disclosure risk [105] of the user’s location
to the adversary. Disclosure risk represents the probability
that an attacker may know about the user’s location and other
sensitive information according to released data and back-
ground knowledge [105]. Typically, the more background
knowledge available to the adversary, the greater the risk of
disclosure. We use  to denote the user’s location and  to
denote disclosing  using background knowledge . Thus,
𝑟(,), representing the disclosure risk as the probability of
, as 𝑟(,) = 𝑃𝑟().According to the protocol, the user sends an NN query,
which consists of an initial search region denoted as , along
with their encrypted location, to the server. We begin by
dividing the entire search area into grid cells, each of which
is small enough to potentially identify individual users; we
denote the area of such a grid cell as 𝑆0. The area of the
initial search region  is represented as 𝑆 . We also specify
the areas of all the Voronoi polygons as 𝑆𝑉𝑃 and the small-
est Voronoi polygon as min(𝑆𝑉𝑃 ). Intuitively, the server’s
ability to determine the user’s exact location is given by
the ratio 𝑆0∕min(𝑆 ,min(𝑆𝑉𝑃 )). It is important to note that
users should not set their initial search region to be smaller
than the smallest Voronoi polygon, i.e., 𝑆 ≫ min(𝑆𝑉𝑃 ).This condition can be ensured through a pre-negotiation
between the client and server prior to the search process.
Consequently, we define the disclosure risk as follows:

𝑟(𝐿,𝐾) = 𝑃𝑟(𝐿𝐾 ) ≤
𝑆0

𝑚𝑖𝑛(𝑆𝑉𝑃 )
(7)

It is clear that the worst-case degree of privacy offered
by PrivNN is contingent on the area of the smallest Voronoi
polygon. This observation is logical, as in densely populated
urban areas, the results of nearest neighbor searches are
likely to disclose more about a user’s location compared to
those conducted in sparsely populated suburban areas. The
dataset density in the search area thus directly impacts the
amount of location information potentially exposed.

7. Experimental Study
In this section, we first present the performance of

PrivNN in comparison with baseline methods for privacy-
preserving NN queries, evaluated on two publicly available
datasets. We then analyze the impact of parameter tuning on
the performance of PrivNN in greater detail.
7.1. Experimental Setup and Dataset

We implemented PrivNN using Ubuntu 22.04 and Python
3.9. For Voronoi diagram computation, we employed Qhull
via the SciPy library. Networking was handled using Python’s
socket and ssl libraries. The CKKS scheme was imple-
mented using the SEAL [106] library, accessed through

(a) High-density POIs in the
VIA dataset.

(b) Low-density POIs in the
Yelp dataset.

Figure 4: Overview of POI densities from two datasets.

the Pyfhel [107] Python wrapper. For the CKKS scheme
parameters, we selected the security parameter 𝑁 = 8192
and a total coefficient-modulus size of 𝑙𝑜𝑔2𝑞𝐿 = 218. We
note that our CKKS parameters satisfy a 128-bit security
level [108]. We deployed the client and server on Google
Cloud Platform (GCP) instances, each with 4 virtual cores
and 16 GB of RAM.

Prior to query processing, the client generates a CKKS
key pair, storing the public key on the server while retaining
the private key locally. The server associates each client’s
public key with their respective client ID. Notably, clients
only need to generate their key pair once during the initial
registration process with the server. Additionally, the server
pre-computes the Voronoi diagram using all data points as
generators, storing this as the reference layer. This reference
layer is pre-loaded into the server’s memory before process-
ing queries, ensuring efficient query responses.

We conducted experiments on two publicly available
datasets to assess the practicality of the PrivNN framework
in supporting spatial NN queries across diverse real-world
scenarios.

VIA dataset. The VIA dataset [109] is a public trans-
portation dataset provided by VIA Metropolitan Transit in
San Antonio, Texas. It consists of 76,707 bus stops within
the city limits, each represented by a pair of geographic
coordinates. We used this dataset to simulate a high-density
POI scenario, in which a bus rider (the client) queries the
service provider (the server) for the nearest bus stop in a
densely populated urban environment.

Yelp dataset. The Yelp dataset1 contains a large collec-
tion of geotagged businesses and user reviews across multi-
ple cities. For our analysis, we filtered the data to include
only businesses located in the Indianapolis metropolitan
area with more than 100 reviews, treating these as points
of interest (POIs). This filtering results in a dataset of 810
businesses. The low spatial density of the resulting dataset
simulates a realistic scenario in which a user queries for the
nearest POI in a sparsely populated or rural area.

1The dataset is available at: https://business.yelp.com/data/

resources/open-dataset/
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Figure 4 illustrates both high-density and low-density
POI distributions, as represented by the two datasets.
7.2. Baseline Comparison

We conducted two experiments to evaluate PrivNN
against state-of-the-art baselines in terms of accuracy and
server response time (CPU time) under varying privacy
guarantees. Specifically, we compared PrivNN with CGP
[39], an enhanced geo-privacy framework based on differ-
ential privacy (DP), and with a recent 𝑘-anonymity cloaking
method [23]. For PrivNN, we set the partition factor 𝑘 = 10
and the initial search region  = min(𝑆𝑉𝑃 ).

Privacy vs. Accuracy. This experiment compares PrivNN
and CGP in terms of the privacy–accuracy trade-off. We cal-
ibrate the differential privacy budget 𝜀 using the odds-ratio
interpretation of geo-indistinguishability: within a specified
protection radius, the output probabilities for any two lo-
cations differ by at most a fixed multiplicative factor. To
align this with PrivNN’s guarantee, we convert the smallest
Voronoi cell areamin(𝑆𝑉𝑃 ) into an equivalent circular radius
and select 𝜀 accordingly. This anchors the privacy parameter
to intuitive spatial metrics (radius/area) while maintaining
consistency with geo-indistinguishability [110].

For each 𝜀, we issue 100 queries and report the mean
accuracy. As shown in Figure 5a, at the matched privacy
level of 𝜀 = 0.08 for the VIA dataset, CGP achieves only
around 85% query accuracy, while PrivNN maintains perfect
accuracy. For the Yelp dataset, which has lower location
density and thus a matched privacy level of 𝜀 = 1.0, PrivNN
continues to outperform CGP, demonstrating significantly
higher accuracy under equivalent privacy constraints.

Privacy vs. Performance. The second experiment com-
pares PrivNN to a k-anonymity-based cloaking baseline to
evaluate the privacy–performance trade-off. We measure the
server’s wall-clock time required to process spatial queries.
To align the privacy levels of both approaches, we match
the adversary’s identification probability: specifically, we
select 𝑘 such that the worst-case probability of identifying a
user over the entire search region equals 1∕min(𝑆𝑉𝑃 )—the
inverse of the smallest Voronoi cell area used by PrivNN. For
each 𝑘, we issue 100 queries and report the mean server-side
processing time.

As shown in Figure 5b, matching privacy corresponds to
𝑘 = 5 × 106 for the VIA dataset. At this level, the cloaking
method must transmit the locations of 𝑘 − 1 pseudo-users
to the server per query, resulting in significantly increased
computation time. In contrast, PrivNN processes the same
number of queries with an average latency of only 0.32 sec-
onds, demonstrating substantial efficiency under equivalent
privacy guarantees.
7.3. Parameter Tuning Analysis

To evaluate performance under various network con-
ditions, our experiments were divided into two configura-
tions: short and long connections. For the short connection
configuration, we allocated both instances within the US
continent—one in the “US South” region (Texas) as the

(a) Accuracy comparison with
various privacy budget 𝜀 for
CGP.

(b) Performance comparison
with various 𝑘 for cloaking
method.

Figure 5: Accuracy and performance comparison between
baseline models and PrivNN for two datasets.

client, and the other in the “US West” region (Oregon) as
the server. For the long connection configuration, we ran
one instance in the “US South” region (Texas) as the client
and the other in the “Europe West” region (Germany) as the
server.

We conducted several experiments to evaluate the over-
head of PrivNN under various network environments and pa-
rameter settings. In the first set of experiments, we analyzed
the impact of the partition factor 𝑘 by varying 𝑘 values while
keeping the initial search region  as the entire search region.
In the second set of experiments, we assessed the impact of
the initial search region  on the performance of the PrivNN
framework, setting 𝑘 = 5 and evaluating performance with
different sizes of .

We measured query response time, client CPU time, total
network round trips, and total exchanged network packet
size as performance metrics to evaluate time and space
overhead in network communication. Each experiment was
performed for both short and long connection configurations
to allow for comparative analysis. Given the network condi-
tion fluctuations and the random sampling employed by the
DHVO algorithm in its partitioning process, we simulated
50 queries for each parameter setting and reported the mean
values for each evaluation metric.

Figure 6 illustrates the performance of the PrivNN
framework with varying values of the partition factor 𝑘 and
the initial search region . In the top row of Figure 6, for
each value of 𝑘 (x-axis), we performed 50 queries where the
location of the query point was randomly selected, and we
averaged the results. Note that the initial search region  is
set to the maximum, i.e., the entire search region, to evaluate
the impact of 𝑘 independently of .

Two key observations can be made from the top row
in Figure 6. First, the short and long connections exhibit
consistency in relative performance across all metrics, in-
dicating that network conditions, such as latency, do not
significantly impact performance. The second observation is
that the query response time, client CPU time, and network
packet size reach their lowest values at 𝑘 = 5, then increase
as 𝑘 continues to rise. This occurs because, as 𝑘 increases,
more points are sampled at each DHVO layer, resulting in
fewer round trips needed to reach the base layer. However,
a higher 𝑘 value also increases the size of network packets
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(e)  vs. Query Response Time
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Figure 6: Performance metrics of PrivNN measured for short and long connections, varying parameters 𝑘 and initial search region
. The top row demonstrates the impact of different values of 𝑘 on query response time, client CPU time, total network round
trips, and total exchanged network packet size, with  encompassing the entire search region to provide the highest level of
privacy protection. The bottom row shows the effect of varying  while keeping 𝑘 = 5, illustrating the practicality of PrivNN with
reduced but still sufficient privacy protection.

and the computing time required for the client to decrypt and
find the shortest distance for each round. This observation is
important as it suggests that setting 𝑘 = 5 is a good heuristic
for minimizing PrivNN’s overhead, independent of network
conditions.

We adopted the heuristic of setting 𝑘 = 5 for the subse-
quent experiments to evaluate the impact of the initial search
region  on the performance of the PrivNN framework. In
the lower row of Figure 6, we set 𝑘 = 5 and varied the size
of the initial search region  from 10 km2 to 100 km2 to
assess the impact of  while keeping 𝑘 constant. The mean
values of the performance metrics for different  values are
listed in Table 2. The results show that all metrics linearly
increase as the size of the initial search region  increases.
This is expected, as a larger initial search region  results
in more DHVO layers being constructed, requiring more
rounds of communication between the client and server. The
results indicate that the initial search region  significantly
affects the performance of the PrivNN framework. As shown
in Equation (3), the size of the smallest Voronoi polygon
dictates PrivNN’s privacy bound. In practice, even a region
of 10 km2 is much larger than the size of the smallest Voronoi
polygon, thus it does not reduce the theoretical level of
privacy protection. In the context of the evaluated dataset,
smaller-sized polygons are within the downtown area of San
Antonio, where we argue that a lower privacy protection
level is within tolerance. From Table 2, we observed that
the performance metrics remain practical even for larger
 values, indicating that PrivNN can provide an excellent
tradeoff between privacy and performance in real-world
scenarios.

Table 2
Metrics Mean for Various  Values (𝑘 = 5)


(km2)

Query Response
Time (s)

Client
CPU Time (s)

Network
Round Trips

Network
Packet Size (MB)

Short Long Short Long Short Long Short Long

10 5.84 8.42 1.30 1.72 3.03 3.20 45.45 54.93
20 7.92 9.23 1.52 1.81 3.47 3.42 61.43 60.35
30 9.17 10.12 1.69 2.16 3.83 3.62 71.47 66.37
40 10.58 11.89 1.93 2.27 4.17 3.94 83.03 76.60
50 12.25 13.39 2.12 2.30 4.56 4.16 94.97 88.97
60 14.32 15.29 2.40 2.52 5.11 4.73 110.88 99.51
70 15.11 16.89 2.43 2.69 5.16 5.13 113.93 109.59
80 16.20 17.44 2.68 2.77 5.60 5.17 126.27 112.77
90 17.56 19.79 2.90 3.03 6.00 5.61 137.64 128.01
100 18.58 21.87 3.02 3.28 6.16 6.10 145.60 140.75

7.4. Operational Overhead Analysis
To provide a fine-grained analysis of PrivNN’s end-to-

end overhead, we measured both the latencies of the CKKS
operations used in our implementation and the precomputa-
tion time for the Voronoi diagram.

CKKS Operations Overhead. Table 3 reports the per-
operation latencies and the amortized per-query costs de-
rived from these measurements. All measurements were
performed on the GCP instance described in Section 7.1. We
executed 100 queries on the VIA dataset with partition factor
𝑘 = 10 and initial search region  = min(𝑆𝑉𝑃 ).

Voronoi Precomputation Overhead. The Voronoi pre-
computation required by PrivNN is modest in practice. On
the GCP instance described in Section 7.1, constructing the
full Voronoi diagram took approximately 5 minutes for the
Yelp dataset and about 18 minutes for the VIA dataset.
Theoretically, planar Voronoi/Delaunay construction admits
a tight bound of Θ(𝑛 log 𝑛) in two dimensions, where 𝑛
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Table 3
CKKS Operations Overhead (𝑁 = 8192, log2 𝑞𝐿 = 218)

(A) One-time client operation (ms)

Operation Time/Op

KeyGen 190

(B) Per-query CKKS operations (ms)

Operation Time/Op Amortized Per-Query

Encode 0.51 15.81
Enc 4.63 4.63
Dec 0.85 20.22
HAdd 0.58 17.98
HMultPlain 0.63 19.53

is the number of generating points. In practice, SciPy’s
implementation typically runs in 𝑂(𝑛 log 𝑛) time but can
degrade to 𝑂(𝑛2) [111–113]. Because the global Voronoi
diagram is computed offline and reused for many queries,
this one-time cost is easily amortized. For frequent POI
updates, we recommend either periodic rebuilds or localized
recomputation: update the Voronoi diagram only within an
expanded bounding box around the modified points, rather
than recomputing the entire diagram.

8. Conclusion
In this paper, we proposed PrivNN, a privacy-preserving

two-party computation framework that enables users to per-
form spatial NN queries from a server without disclosing
their exact location. To efficiently search for NNs in spatial
datasets, we introduced a novel spatial NN search algorithm,
DHVO, which iteratively overlays multi-granular Voronoi
diagrams to refine the search region. Our complexity analy-
sis showed that DHVO offers several advantages over exist-
ing methods used for spatial NN search.

We also proposed a client-server communication pro-
tocol that enables DHVO to be executed in a privacy-
preserving manner using encrypted query data. A rigorous
security and privacy analysis of PrivNN was presented,
demonstrating its robustness against semi-honest adver-
saries under the known background knowledge model, and
establishing its formal privacy guarantees. Our comparison
experiment results show that PrivNN consistently outper-
forms existing approaches in both accuracy and performance
under equivalent privacy settings. We further conducted
parameter tuning experiments, which revealed that the em-
pirical parameter 𝑘 can be strategically optimized, and
that PrivNN remains efficient even when operating over
large initial search regions. We believe that PrivNN can be
effectively extended to a wide range of LBS applications,
such as location-based recommendations, geofencing, and
emergency services, thereby protecting user privacy while
maintaining the functionality and practicality of these appli-
cations.

We note two primary, unresolved challenges in our work.
First, privacy can degrade in very dense spatial datasets

because ambiguity is reduced and anonymity is compro-
mised—an intrinsic limitation of nearest-neighbor queries
and current practical HE deployments. Second, the interac-
tive pruning loop leaks access-pattern signals (the indices
the client returns each round); although distance values
remain encrypted, these index replies can be recorded and
correlated by a curious server and so aid re-identification.
Possible mitigations range from lightweight, low-cost ap-
proaches—returning a small set of dummy indices or using
randomized index reporting (which trades some utility for
reduced leakage)—to stronger but costlier defenses such as
PIR, secure MPC for arg-min function, or trusted execution
environments. We hope these challenges will be addressed
in future work.
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